Loading [MathJax]/extensions/tex2jax.js
MFC: Post-Process
High-fidelity multiphase flow simulation
All Classes Namespaces Files Functions Variables Pages
m_eigen_solver Module Reference

The purpose of the module is to solve an eigenvalue problem for a complex general matrix. Subroutines are imported from EISPACK (https://netlib.org/eispack/) with minor modifications for compatibility. More...

Functions/Subroutines

subroutine, public cg (nm, nl, ar, ai, wr, wi, zr, zi, fv1, fv2, fv3, ierr)
 This subroutine calls the recommended sequence of subroutines from the eigensystem subroutine package (eispack) to find the eigenvalues and eigenvectors (if desired) of a complex general matrix.
 
subroutine, public cbal (nm, nl, ar, ai, low, igh, scale)
 This subroutine is a translation of the algol procedure cbalance, which is a complex version of balance, num. math. 13, 293-304(1969) by parlett and reinsch. handbook for auto. comp., vol.ii-linear algebra, 315-326(1971). This subroutine balances a complex matrix and isolates eigenvalues whenever possible.
 
subroutine, public corth (nm, nl, low, igh, ar, ai, ortr, orti)
 This subroutine is a translation of a complex analogue of the algol procedure orthes, num. math. 12, 349-368(1968) by martin and wilkinson. handbook for auto. comp., vol.ii-linear algebra, 339-358(1971). Given a complex general matrix, this subroutine reduces a submatrix situated in rows and columns low through igh to upper hessenberg form by unitary similarity transformations.
 
subroutine, public comqr2 (nm, nl, low, igh, ortr, orti, hr, hi, wr, wi, zr, zi, ierr)
 This subroutine is a translation of a unitary analogue of the algol procedure comlr2, num. math. 16, 181-204(1970) by peters and wilkinson. handbook for auto. comp., vol.ii-linear algebra, 372-395(1971). The unitary analogue substitutes the qr algorithm of francis (comp. jour. 4, 332-345(1962)) for the lr algorithm. This subroutine finds the eigenvalues and eigenvectors of a complex upper hessenberg matrix by the qr method. The eigenvectors of a complex general matrix can also be found if corth has been used to reduce this general matrix to hessenberg form.
 
subroutine cbabk2 (nm, nl, low, igh, scale, ml, zr, zi)
 This subroutine is a translation of the algol procedure cbabk2, which is a complex version of balbak, num. math. 13, 293-304(1969) by parlett and reinsch. handbook for auto. comp., vol.ii-linear algebra, 315-326(1971). This subroutine forms the eigenvectors of a complex general matrix by back transforming those of the correspondingbalanced matrix determined by cbal.
 
subroutine, public csroot (xr, xi, yr, yi)
 
subroutine, public cdiv (ar, ai, br, bi, cr, ci)
 
subroutine, public pythag (a, b, c)
 

Detailed Description

The purpose of the module is to solve an eigenvalue problem for a complex general matrix. Subroutines are imported from EISPACK (https://netlib.org/eispack/) with minor modifications for compatibility.

Function/Subroutine Documentation

◆ cbabk2()

subroutine m_eigen_solver::cbabk2 ( integer, intent(in) nm,
integer, intent(in) nl,
integer, intent(in) low,
integer, intent(in) igh,
real(wp), dimension(nl), intent(in) scale,
integer, intent(in) ml,
real(wp), dimension(nm, ml), intent(inout) zr,
real(wp), dimension(nm, ml), intent(inout) zi )

This subroutine is a translation of the algol procedure cbabk2, which is a complex version of balbak, num. math. 13, 293-304(1969) by parlett and reinsch. handbook for auto. comp., vol.ii-linear algebra, 315-326(1971). This subroutine forms the eigenvectors of a complex general matrix by back transforming those of the correspondingbalanced matrix determined by cbal.

Parameters
nmthe row dimension of the two-dimensional array parameters
nlthe order of the matrix
arthe real part of the complex matrix to be balanced
aithe imaginary part of the complex matrix to be balanced
lowan integer determined by the balancing subroutine cbal
ighan integer determined by the balancing subroutine cbal
scalethe information determining the permutations and scaling factors used.
mlthe number of eigenvectors to be back transformed
zrthe real part of the eigenvectors to be back transformed in their first ml columns
zithe imaginary part of the eigenvectors to be back transformed in their first ml columns
Here is the caller graph for this function:

◆ cbal()

subroutine, public m_eigen_solver::cbal ( integer, intent(in) nm,
integer, intent(in) nl,
real(wp), dimension(nm, nl), intent(inout) ar,
real(wp), dimension(nm, nl), intent(inout) ai,
integer, intent(out) low,
integer, intent(out) igh,
real(wp), dimension(nl), intent(out) scale )

This subroutine is a translation of the algol procedure cbalance, which is a complex version of balance, num. math. 13, 293-304(1969) by parlett and reinsch. handbook for auto. comp., vol.ii-linear algebra, 315-326(1971). This subroutine balances a complex matrix and isolates eigenvalues whenever possible.

Parameters
nmthe row dimension of the two-dimensional array parameters
nlthe order of the matrix
arthe real part of the complex matrix to be balanced
aithe imaginary part of the complex matrix to be balanced
lowone of two integers such that ar(i,j) and ai(i,j) are equal to zero if (1) i is greater than j and (2) j=1, ,low-1 or i=igh+1, ,nl.
ighone of two integers such that ar(i,j) and ai(i,j) are equal to zero if (1) i is greater than j and (2) j=1, ,low-1 or i=igh+1, ,nl.
scalethe information determining the permutations and scaling factors used.
Here is the caller graph for this function:

◆ cdiv()

subroutine, public m_eigen_solver::cdiv ( real(wp), intent(in) ar,
real(wp), intent(in) ai,
real(wp), intent(in) br,
real(wp), intent(in) bi,
real(wp), intent(out) cr,
real(wp), intent(out) ci )
Here is the caller graph for this function:

◆ cg()

subroutine, public m_eigen_solver::cg ( integer, intent(in) nm,
integer, intent(in) nl,
real(wp), dimension(nm, nl), intent(inout) ar,
real(wp), dimension(nm, nl), intent(inout) ai,
real(wp), dimension(nl), intent(out) wr,
real(wp), dimension(nl), intent(out) wi,
real(wp), dimension(nm, nl), intent(out) zr,
real(wp), dimension(nm, nl), intent(out) zi,
real(wp), dimension(nl), intent(out) fv1,
real(wp), dimension(nl), intent(out) fv2,
real(wp), dimension(nl), intent(out) fv3,
integer, intent(out) ierr )

This subroutine calls the recommended sequence of subroutines from the eigensystem subroutine package (eispack) to find the eigenvalues and eigenvectors (if desired) of a complex general matrix.

Parameters
nmthe row dimension of the two-dimensional array parameters
nlthe order of the matrix a=(ar,ai)
arthe real part of the complex general matrix
aithe imaginary part of the complex general matrix
wrthe real part of the eigenvalues
withe imaginary part of the eigenvalues
zrthe real part of the eigenvectors
zithe imaginary part of the eigenvectors
fv1temporary storage array
fv2temporary storage array
fv3temporary storage array
ierran error completion code
Here is the call graph for this function:

◆ comqr2()

subroutine, public m_eigen_solver::comqr2 ( integer, intent(in) nm,
integer, intent(in) nl,
integer, intent(in) low,
integer, intent(in) igh,
real(wp), dimension(igh), intent(inout) ortr,
real(wp), dimension(igh), intent(inout) orti,
real(wp), dimension(nm, nl), intent(inout) hr,
real(wp), dimension(nm, nl), intent(inout) hi,
real(wp), dimension(nl), intent(out) wr,
real(wp), dimension(nl), intent(out) wi,
real(wp), dimension(nm, nl), intent(out) zr,
real(wp), dimension(nm, nl), intent(out) zi,
integer, intent(out) ierr )

This subroutine is a translation of a unitary analogue of the algol procedure comlr2, num. math. 16, 181-204(1970) by peters and wilkinson. handbook for auto. comp., vol.ii-linear algebra, 372-395(1971). The unitary analogue substitutes the qr algorithm of francis (comp. jour. 4, 332-345(1962)) for the lr algorithm. This subroutine finds the eigenvalues and eigenvectors of a complex upper hessenberg matrix by the qr method. The eigenvectors of a complex general matrix can also be found if corth has been used to reduce this general matrix to hessenberg form.

Parameters
nmthe row dimension of the two-dimensional array parameters
nlthe order of the matrix
lowan integer determined by the balancing subroutine cbal. if cbal has not been used, set low=1.
ighan integer determined by the balancing subroutine cbal. if cbal has not been used, set igh=nl.
ortrinformation about the unitary transformations used in the reduction by corth
ortiinformation about the unitary transformations used in the reduction by corth
hrthe real part of the complex upper hessenberg matrix.
hithe imaginary part of the complex upper hessenberg matrix.
wrthe real part of the eigenvalues
withe imaginary part of the eigenvalues
zrthe real part of the eigenvectors
zithe imaginary part of the eigenvectors
ierran error completion code
Here is the call graph for this function:
Here is the caller graph for this function:

◆ corth()

subroutine, public m_eigen_solver::corth ( integer, intent(in) nm,
integer, intent(in) nl,
integer, intent(in) low,
integer, intent(in) igh,
real(wp), dimension(nm, nl), intent(inout) ar,
real(wp), dimension(nm, nl), intent(inout) ai,
real(wp), dimension(igh), intent(out) ortr,
real(wp), dimension(igh), intent(out) orti )

This subroutine is a translation of a complex analogue of the algol procedure orthes, num. math. 12, 349-368(1968) by martin and wilkinson. handbook for auto. comp., vol.ii-linear algebra, 339-358(1971). Given a complex general matrix, this subroutine reduces a submatrix situated in rows and columns low through igh to upper hessenberg form by unitary similarity transformations.

Parameters
nmthe row dimension of the two-dimensional array parameters
nlthe order of the matrix
arthe real part of the complex matrix
aithe imaginary part of the complex matrix
lowan integer determined by the balancing subroutine cbal. if cbal has not been used, set low=1.
ighan integer determined by the balancing subroutine cbal. if cbal has not been used, set igh=nl.
ortrfurther information about the transformations
ortifurther information about the transformations
Here is the call graph for this function:
Here is the caller graph for this function:

◆ csroot()

subroutine, public m_eigen_solver::csroot ( real(wp), intent(in) xr,
real(wp), intent(in) xi,
real(wp), intent(out) yr,
real(wp), intent(out) yi )
Here is the call graph for this function:
Here is the caller graph for this function:

◆ pythag()

subroutine, public m_eigen_solver::pythag ( real(wp), intent(in) a,
real(wp), intent(in) b,
real(wp), intent(out) c )
Here is the caller graph for this function: