Allaire, G., Clerc, S., and Kokh, S. (2002). A five-equation model for the simulation of interfaces between compressible fluids. Journal of Computational Physics, 181(2):577–616.
Ando, K. (2010). Effects of polydispersity in bubbly flows. PhD thesis, California Institute of Technology.
Balsara, D. S. and Shu, C.-W. (2000). Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. Journal of Computational Physics, 160(2):405–452.
Batten, P., Clarke, N., Lambert, C., and Causon, D. M. (1997). On the choice of wavespeeds for the hllc riemann solver. SIAM Journal on Scientific Computing, 18(6):1553–1570.
Bryngelson, S. H., Schmidmayer, K., Coralic, V., Meng, J. C., Maeda, K., and Colonius, T. (2019). Mfc: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver. arXiv preprint arXiv:1907.10512.
Chen, S. S., Li, J. P., Li, Z., Yuan, W., & Gao, Z. H. (2022). Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes. Journal of Computational Physics, 456, 111027.
Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G. H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E. W., Camp, D., R¨ubel, O., Durant, M., Favre, J. M., and Navr´atil, P. (2012). VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data. In High Performance Visualization–Enabling Extreme-Scale Scientific Insight, pages 357–372.
Coralic, V. (2015). Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy. PhD thesis, California Institute of Technology.
Coralic, V. and Colonius, T. (2014). Finite-volume weno scheme for viscous compressible multicomponent flows. Journal of computational physics, 274:95–121.
Gottlieb, S. and Shu, C.-W. (1998). Total variation diminishing runge-kutta schemes. Mathematics of computation of the American Mathematical Society, 67(221):73–85.
Henrick, A. K., Aslam, T. D., and Powers, J. M. (2005). Mapped weighted essentially nonoscillatory schemes: achieving optimal order near critical points. Journal of Computational Physics, 207(2):542–567.
Borges, R., Carmona, M., Costa, B., and Don, W. S. (2008). An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of computational physics, 227(6):3191–3211.
Fu, L., Hu, X. Y., and Adams, N. A. (2016). A family of high-order targeted ENO schemes for compressible-fluid simulations. Journal of Computational Physics, 305:333–359.
Johnsen, E. (2008). Numerical simulations of non-spherical bubble collapse: With applications to shockwave lithotripsy. PhD thesis, California Institute of Technology.
Maeda, K. and Colonius, T. (2017). A source term approach for generation of one-way acoustic waves in the euler and navier–stokes equations. Wave Motion, 75:36–49.
Meng, J. C. C. (2016). Numerical simulations of droplet aerobreakup. PhD thesis, California Institute of Technology.
Pirozzoli, S., and Colonius, T. (2013). Generalized characteristic relaxation boundary conditions for unsteady compressible flow simulations. Journal of Computational Physics, 248:109-126.
Preston, A., Colonius, T., and Brennen, C. (2007). A reduced-order model of diffusive effects on the dynamics of bubbles. Physics of Fluids, 19(12):123302.
Saurel, R., Petitpas, F., and Berry, R. A. (2009). Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. journal of Computational Physics, 228(5):1678–1712
Schmidmayer, K., Bryngelson, S. H., and Colonius, T. (2019). An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics. arXiv preprint arXiv:1903.08242.
Suresh, A. and Huynh, H. (1997). Accurate monotonicity-preserving schemes with runge–kutta time stepping. Journal of Computational Physics, 136(1):83–99.
Tam, C. K., Ju, H., Jones, M. G., Watson, W. R., and Parrott, T. L. (2005). A computational and experimental study of slit resonators. Journal of Sound and Vibration, 284(3-5), 947-984.
Thompson, K. W. (1987). Time dependent boundary conditions for hyperbolic systems. Journal of computational physics, 68(1):1–24.
Thompson, K. W. (1990). Time-dependent boundary conditions for hyperbolic systems, ii. Journal of computational physics, 89(2):439–461.
Thornber, B., Mosedale, A., Drikakis, D., Youngs, D., & Williams, R. J. (2008). An improved reconstruction method for compressible flows with low Mach number features. Journal of computational Physics, 227(10), 4873-4894.
Titarev, V. A. and Toro, E. F. (2004). Finite-volume weno schemes for three-dimensional conservation laws. Journal of Computational Physics, 201(1):238–260.
Tiwari, A., Freund, J. B., and Pantano, C. (2013). A diffuse interface model with immiscibility preservation. Journal of computational physics, 252:290–309.
Toro, E. F. (2013). Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media.