Loading [MathJax]/extensions/tex2jax.js
MFC
High-fidelity multiphase flow simulation
All Files Pages
References

  • Allaire, G., Clerc, S., and Kokh, S. (2002). A five-equation model for the simulation of interfaces between compressible fluids. Journal of Computational Physics, 181(2):577–616.
  • Ando, K. (2010). Effects of polydispersity in bubbly flows. PhD thesis, California Institute of Technology.
  • Balsara, D. S. and Shu, C.-W. (2000). Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. Journal of Computational Physics, 160(2):405–452.
  • Batten, P., Clarke, N., Lambert, C., and Causon, D. M. (1997). On the choice of wavespeeds for the hllc riemann solver. SIAM Journal on Scientific Computing, 18(6):1553–1570.
  • Bryngelson, S. H., Schmidmayer, K., Coralic, V., Meng, J. C., Maeda, K., and Colonius, T. (2019). Mfc: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver. arXiv preprint arXiv:1907.10512.
  • Chen, S. S., Li, J. P., Li, Z., Yuan, W., & Gao, Z. H. (2022). Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes. Journal of Computational Physics, 456, 111027.
  • Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G. H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E. W., Camp, D., R¨ubel, O., Durant, M., Favre, J. M., and Navr´atil, P. (2012). VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data. In High Performance Visualization–Enabling Extreme-Scale Scientific Insight, pages 357–372.
  • Coralic, V. (2015). Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy. PhD thesis, California Institute of Technology.
  • Coralic, V. and Colonius, T. (2014). Finite-volume weno scheme for viscous compressible multicomponent flows. Journal of computational physics, 274:95–121.
  • Gottlieb, S. and Shu, C.-W. (1998). Total variation diminishing runge-kutta schemes. Mathematics of computation of the American Mathematical Society, 67(221):73–85.
  • Henrick, A. K., Aslam, T. D., and Powers, J. M. (2005). Mapped weighted essentially nonoscillatory schemes: achieving optimal order near critical points. Journal of Computational Physics, 207(2):542–567.
  • Borges, R., Carmona, M., Costa, B., and Don, W. S. (2008). An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of computational physics, 227(6):3191–3211.
  • Fu, L., Hu, X. Y., and Adams, N. A. (2016). A family of high-order targeted ENO schemes for compressible-fluid simulations. Journal of Computational Physics, 305:333–359.
  • Johnsen, E. (2008). Numerical simulations of non-spherical bubble collapse: With applications to shockwave lithotripsy. PhD thesis, California Institute of Technology.
  • Maeda, K. and Colonius, T. (2017). A source term approach for generation of one-way acoustic waves in the euler and navier–stokes equations. Wave Motion, 75:36–49.
  • Meng, J. C. C. (2016). Numerical simulations of droplet aerobreakup. PhD thesis, California Institute of Technology.
  • Pirozzoli, S., and Colonius, T. (2013). Generalized characteristic relaxation boundary conditions for unsteady compressible flow simulations. Journal of Computational Physics, 248:109-126.
  • Preston, A., Colonius, T., and Brennen, C. (2007). A reduced-order model of diffusive effects on the dynamics of bubbles. Physics of Fluids, 19(12):123302.
  • Saurel, R., Petitpas, F., and Berry, R. A. (2009). Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. journal of Computational Physics, 228(5):1678–1712
  • Schmidmayer, K., Bryngelson, S. H., and Colonius, T. (2019). An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics. arXiv preprint arXiv:1903.08242.
  • Suresh, A. and Huynh, H. (1997). Accurate monotonicity-preserving schemes with runge–kutta time stepping. Journal of Computational Physics, 136(1):83–99.
  • Tam, C. K., Ju, H., Jones, M. G., Watson, W. R., and Parrott, T. L. (2005). A computational and experimental study of slit resonators. Journal of Sound and Vibration, 284(3-5), 947-984.
  • Thompson, K. W. (1987). Time dependent boundary conditions for hyperbolic systems. Journal of computational physics, 68(1):1–24.
  • Thompson, K. W. (1990). Time-dependent boundary conditions for hyperbolic systems, ii. Journal of computational physics, 89(2):439–461.
  • Thornber, B., Mosedale, A., Drikakis, D., Youngs, D., & Williams, R. J. (2008). An improved reconstruction method for compressible flows with low Mach number features. Journal of computational Physics, 227(10), 4873-4894.
  • Titarev, V. A. and Toro, E. F. (2004). Finite-volume weno schemes for three-dimensional conservation laws. Journal of Computational Physics, 201(1):238–260.
  • Tiwari, A., Freund, J. B., and Pantano, C. (2013). A diffuse interface model with immiscibility preservation. Journal of computational physics, 252:290–309.
  • Toro, E. F. (2013). Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media.