MFC
Exascale flow solver
Loading...
Searching...
No Matches
Bibliography
[1]

G. Allaire, S. Clerc, and S. Kokh. A five-equation model for the simulation of interfaces between compressible fluids. Journal of Computational Physics, 181(2):577–616, 2002.

[2]

K. Ando, T. Colonius, and C. E. Brennen. Numerical simulation of shock propagation in a polydisperse bubbly liquid. International Journal of Multiphase Flow, 37(6):596–608, 2011.

[3]

K. Ando. Effects of polydispersity in bubbly flows. PhD thesis, California Institute of Technology, 2010.

[4]

D. S. Balsara and C.-W. Shu. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. Journal of Computational Physics, 160(2):405–452, 2000.

[5]

P. Batten, N. Clarke, C. Lambert, and D. M. Causon. On the choice of wavespeeds for the HLLC Riemann solver. SIAM Journal on Scientific Computing, 18(6):1553–1570, 1997.

[6]

R. Borges, M. Carmona, B. Costa, and W. S. Don. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 227(6):3191–3211, 2008.

[7]

S. H. Bryngelson, T. Colonius, and R. O. Fox. QBMMlib: A library of quadrature-based moment methods. SoftwareX, 12:100615, 2020.

[8]

S. H. Bryngelson, K. Schmidmayer, V. Coralic, J. C. Meng, K. Maeda, and T. Colonius. MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver. Computer Physics Communications, 266:107396, 2021.

[9]

A. Cao and F. Schäfer. Information geometric regularization of the barotropic Euler equations. arXiv preprint arXiv:2308.14127, 2024.

[10]

S. Cao, Y. Zhang, D. Liao, P. Zhong, and K. G. Wang. Shock-induced damage and dynamic fracture in cylindrical bodies submerged in liquid. International Journal of Solids and Structures, 169:55–71, 2019.

[11]

S. S. Chen, J. P. Li, Z. Li, W. Yuan, and Z. H. Gao. Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes. Journal of Computational Physics, 456:111027, 2022.

[12]

E. Cisneros-Garibay, H. Le Berre, D. Adam, S. H. Bryngelson, and J. B. Freund. Pyrometheus: Symbolic abstractions for XPU and automatically differentiated computation of combustion kinetics and thermodynamics. Computer Physics Communications, 320:109987, 2026.

[13]

K. W. Commander and A. Prosperetti. Linear pressure waves in bubbly liquids: Comparison between theory and experiments. Journal of the Acoustical Society of America, 85(2):732–746, 1989.

[14]

V. Coralic. Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy. PhD thesis, California Institute of Technology, 2015.

[15]

A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic divergence cleaning for the MHD equations. Journal of Computational Physics, 175(2):645–673, 2002.

[16]

L. Fu, X. Y. Hu, and N. A. Adams. A family of high-order targeted ENO schemes for compressible-fluid simulations. Journal of Computational Physics, 305:333–359, 2016.

[17]

F. R. Gilmore. The growth or collapse of a spherical bubble in a viscous compressible liquid. Technical Report Report 26-4, California Institute of Technology, 1952.

[18]

S. Gottlieb and C.-W. Shu. Total variation diminishing Runge–Kutta schemes. Mathematics of Computation, 67(221):73–85, 1998.

[19]

H. Guo, P. Jiang, L. Ye, and Y. Zhu. An efficient and low-divergence method for generating inhomogeneous and anisotropic turbulence with arbitrary spectra. Journal of Fluid Mechanics, 970:A2, 2023.

[20]

A. Harten, P. D. Lax, and B. van Leer. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1):35–61, 1983.

[21]

A. K. Henrick, T. D. Aslam, and J. M. Powers. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. Journal of Computational Physics, 207(2):542–567, 2005.

[22]

G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126(2):202–228, 1996.

[23]

E. Johnsen. Numerical simulations of non-spherical bubble collapse: with applications to shockwave lithotripsy. PhD thesis, California Institute of Technology, 2008.

[24]

K. Kamrin, C. H. Rycroft, and J.-C. Nave. Reference map technique for finite-strain elasticity and fluid-solid interaction. Journal of the Mechanics and Physics of Solids, 60(11):1952–1969, 2012.

[25]

A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son, and D. S. Stewart. Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations. Physics of Fluids, 13(10):3002–3024, 2001.

[26]

J. B. Keller and M. J. Miksis. Bubble oscillations of large amplitude. Journal of the Acoustical Society of America, 68(2):628–633, 1980.

[27]

O. Le Métayer, J. Massoni, and R. Saurel. Elaborating equations of state of a liquid and its vapor for two-phase flow models. International Journal of Thermal Sciences, 43(3):265–276, 2004.

[28]

Lord Rayleigh. On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine, 34(200):94–98, 1917.

[29]

K. Maeda and T. Colonius. A source term approach for generation of one-way acoustic waves in the Euler and Navier–Stokes equations. Wave Motion, 75:36–49, 2017.

[30]

K. Maeda and T. Colonius. Eulerian–Lagrangian method for simulation of cloud cavitation. Journal of Computational Physics, 371:994–1017, 2018.

[31]

B. J. McBride, S. Gordon, and M. A. Reno. Coefficients for calculating thermodynamic and transport properties of individual species. Technical Report TM-4513, NASA, 1993.

[32]

J. C. C. Meng. Numerical simulations of droplet aerobreakup. PhD thesis, California Institute of Technology, 2016.

[33]

R. Menikoff and B. J. Plohr. The Riemann problem for fluid flow of real materials. Reviews of Modern Physics, 61(1):75–130, 1989.

[34]

R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid Mechanics, 37:239–261, 2005.

[35]

T. Miyoshi and K. Kusano. A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. Journal of Computational Physics, 208(1):315–344, 2005.

[36]

S. Pirozzoli and T. Colonius. Generalized characteristic relaxation boundary conditions for unsteady compressible flow simulations. Journal of Computational Physics, 248:109–126, 2013.

[37]

M. S. Plesset. The dynamics of cavitation bubbles. Journal of Applied Mechanics, 16:277–282, 1949.

[38]

A. T. Preston, T. Colonius, and C. E. Brennen. A reduced-order model of diffusive effects on the dynamics of bubbles. Physics of Fluids, 19(12):123302, 2007.

[39]

M. Rodriguez and E. Johnsen. A high-order accurate five-equations compressible multiphase approach for viscoelastic fluids and solids with relaxation and elasticity. Journal of Computational Physics, 379:70–90, 2019.

[40]

R. Saurel, F. Petitpas, and R. Abgrall. Modelling phase transition in metastable liquids: application to cavitating and flashing flows. Journal of Fluid Mechanics, 607:313–350, 2008.

[41]

R. Saurel, F. Petitpas, and R. A. Berry. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. Journal of Computational Physics, 228(5):1678–1712, 2009.

[42]

K. Schmidmayer, F. Petitpas, E. Daniel, N. Favrie, and S. L. Gavrilyuk. A model and numerical method for compressible flows with capillary effects. Journal of Computational Physics, 334:468–496, 2017.

[43]

K. Schmidmayer, S. H. Bryngelson, and T. Colonius. An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics. Journal of Computational Physics, 402:109080, 2020.

[44]

G. Strang. On the construction and comparison of difference schemes. SIAM Journal on Numerical Analysis, 5(3):506–517, 1968.

[45]

A. Suresh and H. Huynh. Accurate monotonicity-preserving schemes with Runge–Kutta time stepping. Journal of Computational Physics, 136(1):83–99, 1997.

[46]

C. K. Tam, H. Ju, M. G. Jones, W. R. Watson, and T. L. Parrott. A computational and experimental study of slit resonators. Journal of Sound and Vibration, 284(3–5):947–984, 2005.

[47]

K. W. Thompson. Time dependent boundary conditions for hyperbolic systems. Journal of Computational Physics, 68(1):1–24, 1987.

[48]

K. W. Thompson. Time-dependent boundary conditions for hyperbolic systems, II. Journal of Computational Physics, 89(2):439–461, 1990.

[49]

B. Thornber, A. Mosedale, D. Drikakis, D. Youngs, and R. J. R. Williams. An improved reconstruction method for compressible flows with low Mach number features. Journal of Computational Physics, 227(10):4873–4894, 2008.

[50]

E. F. Toro, M. Spruce, and W. Speares. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4:25–34, 1994.

[51]

E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, 3rd edition, 2009.

[52]

Y. H. Tseng and J. H. Ferziger. A ghost-cell immersed boundary method for flow in complex geometry. Journal of Computational Physics, 192(2):593–623, 2003.

[53]

B. Wilfong, A. Radhakrishnan, H. Le Berre, D. J. Vickers, T. Prathi, N. Tselepidis, B. Dorschner, R. Budiardja, B. Cornille, S. Abbott, F. Schäfer, and S. H. Bryngelson. Simulating many-engine spacecraft: Exceeding 1 quadrillion degrees of freedom via information geometric regularization. In SC’25: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 14–24, 2025. *Equal contribution.

[54]

B. Wilfong, H. Le Berre, A. Radhakrishnan, A. Gupta, D. J. Vickers, D. Vaca-Revelo, D. Adam, H. Yu, H. Lee, J. R. Chreim, M. Carcana Barbosa, Y. Zhang, E. Cisneros-Garibay, A. Gnanaskandan, M. Rodriguez Jr., R. D. Budiardja, S. Abbott, T. Colonius, and S. H. Bryngelson. MFC 5.0: An exascale many-physics flow solver. Computer Physics Communications, 322:110055, 2026.

[55]

A. Zein, M. Hantke, and G. Warnecke. Modeling phase transition for compressible two-phase flows applied to metastable liquids. Journal of Computational Physics, 229(8):2964–2998, 2010.