|
MFC
Exascale flow solver
|
G. Allaire, S. Clerc, and S. Kokh. A five-equation model for the simulation of interfaces between compressible fluids. Journal of Computational Physics, 181(2):577–616, 2002.
K. Ando, T. Colonius, and C. E. Brennen. Numerical simulation of shock propagation in a polydisperse bubbly liquid. International Journal of Multiphase Flow, 37(6):596–608, 2011.
K. Ando. Effects of polydispersity in bubbly flows. PhD thesis, California Institute of Technology, 2010.
D. S. Balsara and C.-W. Shu. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. Journal of Computational Physics, 160(2):405–452, 2000.
P. Batten, N. Clarke, C. Lambert, and D. M. Causon. On the choice of wavespeeds for the HLLC Riemann solver. SIAM Journal on Scientific Computing, 18(6):1553–1570, 1997.
R. Borges, M. Carmona, B. Costa, and W. S. Don. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 227(6):3191–3211, 2008.
S. H. Bryngelson, T. Colonius, and R. O. Fox. QBMMlib: A library of quadrature-based moment methods. SoftwareX, 12:100615, 2020.
S. H. Bryngelson, K. Schmidmayer, V. Coralic, J. C. Meng, K. Maeda, and T. Colonius. MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver. Computer Physics Communications, 266:107396, 2021.
A. Cao and F. Schäfer. Information geometric regularization of the barotropic Euler equations. arXiv preprint arXiv:2308.14127, 2024.
S. Cao, Y. Zhang, D. Liao, P. Zhong, and K. G. Wang. Shock-induced damage and dynamic fracture in cylindrical bodies submerged in liquid. International Journal of Solids and Structures, 169:55–71, 2019.
S. S. Chen, J. P. Li, Z. Li, W. Yuan, and Z. H. Gao. Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes. Journal of Computational Physics, 456:111027, 2022.
E. Cisneros-Garibay, H. Le Berre, D. Adam, S. H. Bryngelson, and J. B. Freund. Pyrometheus: Symbolic abstractions for XPU and automatically differentiated computation of combustion kinetics and thermodynamics. Computer Physics Communications, 320:109987, 2026.
K. W. Commander and A. Prosperetti. Linear pressure waves in bubbly liquids: Comparison between theory and experiments. Journal of the Acoustical Society of America, 85(2):732–746, 1989.
V. Coralic. Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy. PhD thesis, California Institute of Technology, 2015.
A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic divergence cleaning for the MHD equations. Journal of Computational Physics, 175(2):645–673, 2002.
L. Fu, X. Y. Hu, and N. A. Adams. A family of high-order targeted ENO schemes for compressible-fluid simulations. Journal of Computational Physics, 305:333–359, 2016.
F. R. Gilmore. The growth or collapse of a spherical bubble in a viscous compressible liquid. Technical Report Report 26-4, California Institute of Technology, 1952.
S. Gottlieb and C.-W. Shu. Total variation diminishing Runge–Kutta schemes. Mathematics of Computation, 67(221):73–85, 1998.
H. Guo, P. Jiang, L. Ye, and Y. Zhu. An efficient and low-divergence method for generating inhomogeneous and anisotropic turbulence with arbitrary spectra. Journal of Fluid Mechanics, 970:A2, 2023.
A. Harten, P. D. Lax, and B. van Leer. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1):35–61, 1983.
A. K. Henrick, T. D. Aslam, and J. M. Powers. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. Journal of Computational Physics, 207(2):542–567, 2005.
G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126(2):202–228, 1996.
E. Johnsen. Numerical simulations of non-spherical bubble collapse: with applications to shockwave lithotripsy. PhD thesis, California Institute of Technology, 2008.
K. Kamrin, C. H. Rycroft, and J.-C. Nave. Reference map technique for finite-strain elasticity and fluid-solid interaction. Journal of the Mechanics and Physics of Solids, 60(11):1952–1969, 2012.
A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son, and D. S. Stewart. Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations. Physics of Fluids, 13(10):3002–3024, 2001.
J. B. Keller and M. J. Miksis. Bubble oscillations of large amplitude. Journal of the Acoustical Society of America, 68(2):628–633, 1980.
O. Le Métayer, J. Massoni, and R. Saurel. Elaborating equations of state of a liquid and its vapor for two-phase flow models. International Journal of Thermal Sciences, 43(3):265–276, 2004.
Lord Rayleigh. On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine, 34(200):94–98, 1917.
K. Maeda and T. Colonius. A source term approach for generation of one-way acoustic waves in the Euler and Navier–Stokes equations. Wave Motion, 75:36–49, 2017.
K. Maeda and T. Colonius. Eulerian–Lagrangian method for simulation of cloud cavitation. Journal of Computational Physics, 371:994–1017, 2018.
B. J. McBride, S. Gordon, and M. A. Reno. Coefficients for calculating thermodynamic and transport properties of individual species. Technical Report TM-4513, NASA, 1993.
J. C. C. Meng. Numerical simulations of droplet aerobreakup. PhD thesis, California Institute of Technology, 2016.
R. Menikoff and B. J. Plohr. The Riemann problem for fluid flow of real materials. Reviews of Modern Physics, 61(1):75–130, 1989.
R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid Mechanics, 37:239–261, 2005.
T. Miyoshi and K. Kusano. A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. Journal of Computational Physics, 208(1):315–344, 2005.
S. Pirozzoli and T. Colonius. Generalized characteristic relaxation boundary conditions for unsteady compressible flow simulations. Journal of Computational Physics, 248:109–126, 2013.
M. S. Plesset. The dynamics of cavitation bubbles. Journal of Applied Mechanics, 16:277–282, 1949.
A. T. Preston, T. Colonius, and C. E. Brennen. A reduced-order model of diffusive effects on the dynamics of bubbles. Physics of Fluids, 19(12):123302, 2007.
M. Rodriguez and E. Johnsen. A high-order accurate five-equations compressible multiphase approach for viscoelastic fluids and solids with relaxation and elasticity. Journal of Computational Physics, 379:70–90, 2019.
R. Saurel, F. Petitpas, and R. Abgrall. Modelling phase transition in metastable liquids: application to cavitating and flashing flows. Journal of Fluid Mechanics, 607:313–350, 2008.
R. Saurel, F. Petitpas, and R. A. Berry. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. Journal of Computational Physics, 228(5):1678–1712, 2009.
K. Schmidmayer, F. Petitpas, E. Daniel, N. Favrie, and S. L. Gavrilyuk. A model and numerical method for compressible flows with capillary effects. Journal of Computational Physics, 334:468–496, 2017.
K. Schmidmayer, S. H. Bryngelson, and T. Colonius. An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics. Journal of Computational Physics, 402:109080, 2020.
G. Strang. On the construction and comparison of difference schemes. SIAM Journal on Numerical Analysis, 5(3):506–517, 1968.
A. Suresh and H. Huynh. Accurate monotonicity-preserving schemes with Runge–Kutta time stepping. Journal of Computational Physics, 136(1):83–99, 1997.
C. K. Tam, H. Ju, M. G. Jones, W. R. Watson, and T. L. Parrott. A computational and experimental study of slit resonators. Journal of Sound and Vibration, 284(3–5):947–984, 2005.
K. W. Thompson. Time dependent boundary conditions for hyperbolic systems. Journal of Computational Physics, 68(1):1–24, 1987.
K. W. Thompson. Time-dependent boundary conditions for hyperbolic systems, II. Journal of Computational Physics, 89(2):439–461, 1990.
B. Thornber, A. Mosedale, D. Drikakis, D. Youngs, and R. J. R. Williams. An improved reconstruction method for compressible flows with low Mach number features. Journal of Computational Physics, 227(10):4873–4894, 2008.
E. F. Toro, M. Spruce, and W. Speares. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4:25–34, 1994.
E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, 3rd edition, 2009.
Y. H. Tseng and J. H. Ferziger. A ghost-cell immersed boundary method for flow in complex geometry. Journal of Computational Physics, 192(2):593–623, 2003.
B. Wilfong, A. Radhakrishnan, H. Le Berre, D. J. Vickers, T. Prathi, N. Tselepidis, B. Dorschner, R. Budiardja, B. Cornille, S. Abbott, F. Schäfer, and S. H. Bryngelson. Simulating many-engine spacecraft: Exceeding 1 quadrillion degrees of freedom via information geometric regularization. In SC’25: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 14–24, 2025. *Equal contribution.
B. Wilfong, H. Le Berre, A. Radhakrishnan, A. Gupta, D. J. Vickers, D. Vaca-Revelo, D. Adam, H. Yu, H. Lee, J. R. Chreim, M. Carcana Barbosa, Y. Zhang, E. Cisneros-Garibay, A. Gnanaskandan, M. Rodriguez Jr., R. D. Budiardja, S. Abbott, T. Colonius, and S. H. Bryngelson. MFC 5.0: An exascale many-physics flow solver. Computer Physics Communications, 322:110055, 2026.
A. Zein, M. Hantke, and G. Warnecke. Modeling phase transition for compressible two-phase flows applied to metastable liquids. Journal of Computational Physics, 229(8):2964–2998, 2010.